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1 STATEMENT OF THE PROBLEM 
Electroencephalography (EEG) offers a non-invasive brain-imaging technology with 
potential to extract user intent from brain signals. This can offer a potential method for 
dispersed soldiers to communicate silently with one another. Army-supported MURI (led 
by University of California, Irvine) on “Silent Spatialized Communication among 
Dispersed Forces” is aimed at developing this technology.  
 
One interface for acquiring EEG signals is an EEG skull cap that may house 128 or more 
electrodes. Each EEG signal may be sampled at KHz sampling rates and may last for a 
few seconds. Thus the number of samples used to represent each trial can be in the order 
of millions. Given the multiple trials, multiple subjects and multiple types of experiments 
necessary for developing effective classification techniques, the number of overall 
samples can become very large leading to significant computational and storage 
complexity challenges. Even worse, this may represent the case where much of the data 
(corresponding to electrodes placed in some regions) may be irrelevant and even nuisance 
signals for the covert speech classification problem at hand. Thus, the goal of this short-
term innovative research (STIR) project was to investigate innovative sample and 
channel (i.e., EEG electrode) selection methods to reduce the storage and computational 
complexity in analyzing EEG signals.  

2 SUMMARY OF THE MOST IMPORTANT RESULTS 
First set of experiments were aimed at determining the redundancy in imagined speech 
EEG signals. This was done through the application of compressed sensing and sparse 
representation concepts as well as through manual selection. We observed that EEG data 
has limited spatial redundancy, e.g., while the number of electrodes is 110, we seem to 
need about 75 non-zero coefficients, implying that the spatial redundancy is less than 
50%. EEG data appears to have large temporal redundancy.  An EEG signal set with 880 
samples is well represented by about 167 non-zero coefficients, corresponding to about 
80% temporal redundancy. 
 
In the second set of experiments, we investigated the classification of imagined speech 
syllables “Ba” and “Ku” from imagined speech EEG signals collected from seven 
subjects at University of California, Irvine. Using all “good” channels, almost all of the 
subjects with the exception of subject 7 produce chance results. Subject 7 produced 2-
class classification accuracy of about 60%. We also investigated manual electrode 
selection and automatic electrode selection.  To select electrodes using the automated 
method, the electrode correlations are first computed using earlier trials as templates.  
Then for each cluster found by the automated method, a single electrode from the cluster 
is selected as the main electrode, which is the one located in closest to the center of the 
cluster.  From the group of main electrodes, the final selected electrodes are then limited 
to ones that lie above the brain regions that are activated during speech production.  The 
classification rates from the manual and automatic channel selection are comparable, 
although the automated method selects fewer electrodes.  Subjects 2 and 7 yielded better-
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than-chance results with recognition rates close to 60% for all trials, and subjects 3 and 6 
were slightly better than chance.  Overall classification rates appear to have improved 
slightly by selecting specific electrodes. 

3 DATA COLLECTION 

3.1 Imagined Speech EEG Data 
The imagined speech EEG dataset was collected in the Department of Cognitive Sciences 
at UCI.  They conducted experiments in which volunteer subjects imagined speaking two 
syllables, /ba/ or /ku/ while their electrical brainwave activity was being recorded by 
EEG.  These syllables were selected since they contain no semantic meaning so that 
classification would be performed on the imagined speech instead of the semantic 
contribution to imagined speech production [1]. The subjects were instructed to covertly 
speak a given syllable at a certain rhythm, both of which were provided via audio cues.  
So in each trial, a syllable (either /ba/ or /ku/) was heard through a set of Stax 
electrostatic earphones followed by a series of clicks at the desired rhythm for the 
imagined speech.  Approximately 1.5 seconds after the last click, the subject was to begin 
to imagine speaking the spoken syllable at the given rhythm (see Figure 1 for a timeline 
[1]).  During the time segment corresponding to EEG signals of interest, no audio or 
video stimuli were present - the subject was supposed to imagine speaking that syllable at 
that rhythm.  
 
As described in [1], the EEG data were recorded using a 128 Channel Sensor Net by 
Electrical Geodesics [2] and sampled at 1024Hz. A single experimental session was 
typically comprised of 20 trials for each condition, and data were recorded over separate 
sessions, which varied for each subject.  During the recording, the subjects were seated in 
a dimly lit room and instructed to keep their eyes open and to fixate on a certain point 
while avoiding any eye blinks and muscle movement.   

 

 
Figure 1.  Timeline for a single trial in the covert speech experiment [1] 

3.2 Multi-class Motor Imagery EEG Data 
Multi-class motor imagery EEG data from the BCI Competition III (dataset IIIa) [3] was 
also used to test the general applicability of the proposed channel selection method to 
EEG data for imagined tasks.  The subject was cued to either imagine left hand, right 
hand, foot, or tongue movements for a total of 4 different classes of data.  A 64-channel 
EEG amplifier from Neuroscan was used to record brainwave activity, and the EEG was 
sampled at 250Hz and filtered to a frequency range of 1 to 50 Hz [3].  Sixty EEG 
channels were recorded, and indexed according to Figure 2.  
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Figure 2.  Position of EEG electrodes for the multi-class motor imagery EEG dataset [3]. 

4 DATA PREPROCESSING 
During these experiments, although the subjects attempt to keep movement to a minimum 
during these recordings, the EEG data inevitably contain some presence of artifacts (i.e., 
changes in EEG amplitudes that do not correspond to brainwave activity but eye 
movements or muscle movements instead).  These artifacts tend to dominate and obscure 
the actual cortical signal.  Additionally, in some cases these artifacts can be fairly 
predictive.  This may result in deceptively high recognition rates since a classifier would 
succeed by identifying these artifacts as opposed to the portions of the signal that reflect 
the true brainwave activity.  Therefore, the EEG data is first preprocessed to remove 
artifacts and also to reduce noise (e.g., 60Hz line noise). 
 
For the imagined speech EEG data, electromyographic (EMG) artifacts (i.e., muscle 
artifacts) are first considered for removal using the same preprocessing steps suggested 
by D’Zmura et al. in [1].  EEG signals from 18 of the 128 electrodes that are closest to 
the neck, eyes, and temple are discarded since they are the most prone to EMG artifacts. 
Furthermore, since EMG artifacts are typically present in frequencies greater than 25Hz, 
the remaining EEG signals are filtered to a frequency range of 4 to 25Hz, which 
additionally removes the 60Hz line noise from these signals. The data is then detrended 
to remove baseline drift and downsampled to a more manageable sampling rate of 256Hz.  
In addition, 4 electrodes were found to be faulty in a number of trials (as no data were 
collected by these electrodes during these trials), so signals from these electrodes were 
completely discarded as well. 
 
For the imagined movement EEG data, artifact information was provided by the group 
that collected the data, so trials containing artifacts were already visually identified and 
flagged.  This given information was used to discard contaminated trials.   
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5 COMPRESSED SENSING FOR IMAGINED SPEECH EEG DATA 
A major research breakthrough in the past five years has been the concept of compressed 
sensing [4]. It has been shown that sparse signals (i.e., signals which have a small number 
of non-small values in some domain) can be accurately represented using a small number 
of projections of such signals on to data-independent random vectors. The signal of 
interest does not have to be sparse in the original signal domain --- it may be sparse in 
some other domain such as the frequency domain or in discrete cosine transform (DCT) 
domain. The reconstruction from such a sparse representation can be achieved using L1 
optimization methods. For the EEG-based covert speech classification task, we have 
investigated the benefits, if any, of compressed sensing.   

5.1 Simulation Setup 
As EEG signals have both spatial redundancy and temporal redundancy, they are 
processed as a 2-D image. As shown in Figure 3, every signal set has K time samples and 
the data dimension is Nchannel × K, where Nchannel is the number of channels.    
 
In the Ba-Ku imagined speech syllable classification experiments, signals from Subject 6 
led to the best classification results. Hence we focused on data from Subject 6 to 
investigate the benefits of compressed sensing theory. In the following simulations, both 
the training set and the testing set are from Subject 6 for the imagined speech EEG data. 

 
 

Figure 3.  Segmentation of original EEG data to small sets suitable for sparse analysis.  The EEG signals 
are treated as a 2-D spatial-temporal image. The dimension for each set is Nchannel ×K, where Nchannel is the 

number of channels and K is number of time samples. 
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5.2 Sparse Representation for EEG signals 
In sparse representation, signals are described as linear combinations of a few “atoms” 
from a pre-specified dictionary.  The key problem here is how to find the suitable 
dictionary.  Classically, such dictionaries are built from a data model, such as the 
Discrete Cosine Transform (DCT) or the Discrete Wavelet Transform (DWT) for natural 
images.  As EEG signals tend to be quite noisy, a good general model is hard to obtain. 
So we chose to learn a dictionary from the training set [5]-[7]. The corresponding 
optimization problem is: 

min
B , S

1
2σ 2 X − BS F

2 + β φ
i, j
∑ (Si, j )

s.t : Bi, j
2 ≤ c, ∀j =1,...,n

i
∑

     (1) 

where X is the m×t input matrix (each column is an input vector), B is the m×n dictionary 
(each column is a basis vector) and S is the n×t coefficient matrix. The penalty function 
φ(·) is L1 or epsilon L1 norms, defined as follows. 

φ(Si, j ) =
Si, j 1

(L1 penalty)

Si, j
2 + εs( )1/ 2

(Epsilon L1 penalty)

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
   (2) 

In (1), the first part corresponds to the representation ability of the dictionary B, and the 
second penalty part denotes the sparsity of the representation. The algorithm in [6] is 
adopted to solve this optimization problem. The key idea in the algorithm is - though the 
original problem (1) is non-convex, it is convex in B with S fixed, and convex in S with B 
fixed. So an iterative approach is used by solving the two convex sub-problems 
alternately. 

5.2.1 Results  
10,000 samples are used to train the dictionary, and another 200 samples are used for 

testing.  Here the input vector is taken as shown in Figure 3, with K ∈{1, 3, 5, 8}.  The 
simulation result is shown in Figure 4.  Following observations can be made from these 
simulation results. 

• EEG data has limited spatial redundancy.  When K = 1 (i.e., when there are only 
spatial samples), the average number of non-zero coefficients is about 75 and 
number of electrodes is 110. More than half of the coefficients are non-zero. 

• EEG data has large temporal redundancy.  The compression ratio increases with the 
number of time samples, K.  When signal size becomes 880 (K = 8), it is perfectly 
represented by about 167 non-zero coefficients. 
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Figure 4.  Sparse representation on optimal dictionary. Here the x-axis is the dimension of original signal, 

the y-axis is the number of non-zero coefficients from decomposing the signal with the dictionary. The 
result is an average, and the red lines denote the standard deviation on test data. 

 

5.3 Compressed Sensing 
In this section the classical compressed sensing method presented in [8] is investigated. 
Consider a general linear measurement process that computes the inner product between 
original signal x and a collection of vectors {Φj}: 

 

y = Φx = ΦBs      (3) 

where y is the measurement data, Φ is defined as the measurement matrix (which in 
practice is drawn at random), B is the dictionary, and s is the sparse vector. Basis pursuit 
is used to get the sparse vector s, which is formulated as: 

 

ˆ s = argmin
s

y − Φs 2 + λ s 1{ }    (4) 

This optimization problem is solved with the method described in [9]. 
 

The simulation setup is the same with last section. Define 

 

ˆ x  as the reconstructed signal. 
To analyze the result quantitatively, the reconstruction error defined as: 

 

ε =
ˆ x − x

2

x 2

      (5) 

which serves as the performance index.  The simulation results are shown in Table 1.  
The EEG data are well reconstructed by compressed sensing. When K = 8, the EEG data 
can be compressed by a ratio of 5.5. 
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 m
r

 E(ε) STD(ε) 

m = 110, r = 90 1.22 3.74% 0.0249 
m = 110, r = 80 1.38 4.84% 0.0342 
m = 330, r = 120 2.75 4.33% 0.0151 
m = 330, r = 110 3.00 5.13% 0.0195 
m = 330, r = 100 3.30 7.11% 0.0250 
m = 550, r = 150 3.67 3.87% 0.0679 
m = 550, r = 140 3.93 4.77% 0.0809 
m = 550, r = 130 4.23 5.76% 0.0826 
m = 880, r = 180 4.89 3.92% 0.0201 
m = 880, r = 170 4.89 4.63% 0.0212 
m = 880, r = 160 4.89 5.44% 0.0254 

 

Table 1.  Simulation results for compressed sensing. 
 
Here, m is the EEG signal size, r is the measurement data size, m/r is the compression 
ratio, E(.) is the expectation, and STD(.) is the standard deviation.   

5.4 Channel Selection 
The purpose of channel selection is to reconstruct the brainwave signal with as few 
electrodes as possible. Different from classical compressed sensing discussed in last 
subsection, the measurement matrix Φ here is restricted to be a “selection” matrix; the 
elements of the measurement matrix are either zero or one, and the sum of each row is 
one.  A direct approach for getting optimal Φ is to randomly pick channels and select the 
channel set with minimum error.  However, such a “brute force” method is very slow.  As 
an alternative, an iterative algorithm is proposed.  The cost function is designed to 
minimize the error of reconstruction over training data. The key idea is that given an 
initial channel set, we apply compressed sensing and add the worst channel into the set 
iteratively.  The detailed algorithm is shown in Table 2.  The simulation result over 1,000 
test samples is shown in Figure 5. By selecting 80 out of 110 channels, we observe a 5% 
reconstruction error whereas if we allow the number of channels to increase to 90, this 
reconstruction error decreased to 3%. 

 
 Input: initial channel set Θ, training data {Xi}, i ∈  {1,…, t}, target channel 

number r 
1 Make measurement matrix Φ from channel sets Θ. 
2 Use compressed sensing to get the reconstruction { ˆ X i}, i ∈ {1,..., t} 

3 For channel j, calculate the error vector v j =
ˆ X ⋅, j − X⋅, j 2

X⋅, j 2

, j ∈ {1,..., m} 

4 Add p = argmax j ∉Θ v j  into Θ   
5 If size(Θ) < r, go back to step 1; else stop. 

 
Table 2.  Channel selection algorithm 
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Figure 5.  Simulation result for channel selection.  r is final number of selected channels (out of 110), and ε 

is the reconstruction error  

6 CHANNEL SELECTION FOR EEG SIGNAL CLASSIFICATION  
In this section, we will describe other approaches to reducing the number of channels 
(i.e., EEG electrodes). Channel reduction may also be helpful for classification as well, 
by either reducing the amount of computation required by discarding electrodes, or by 
enhancing the signal classification by only using channels thought to contain information 
relevant to the signal of interest.  The approach for classifying imagined speech EEG data 
is first presented along with the classification results for using all electrodes, and then 
classification results will also be shown where specific electrodes are selected either 
manually or automatically.  Lastly, it will be shown that the automatic electrode selection 
approach can also be applied to discard redundant electrodes, as will be demonstrated 
using motor imagery EEG data. 

6.1 Imagined Speech EEG Classification  

6.1.1 Preprocessing 
For the imagined speech EEG data, preprocessing is performed as described in Section 4, 
but the sub-sampling rate is increased from 5 to 16, and the “bad” electrodes that are 
closest to the eyes, neck and temple are used (instead of being removed from further 
consideration) to denoise the remaining EEG signals from the “good” electrodes.   

6.1.2 Denoising 
Define the brain signal S as the electrical signal from brain activity, and the noise א as the 
signal that is contaminated with artifacts.  Two problems are discussed in this section: is 
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there is noise in data, and if so, how can we remove it.  Before going into detail however, 
some basic assumptions are necessary: 

1. Noise א is statistically independent of the brain signal S. 
2. The “bad” channels only contain noise. 
3. Both the noise and the brain signals are Gaussian distributed and the observation 

system is linear. 
The first assumption is reasonable as artifacts are thought to originate from independent 
biological processes, and are therefore independent of the brain activity of interest. The 
second assumption holds because the “bad” channels are far from the active brain region 
and heavily contaminated by artifacts. The third assumption is a simplification of the 
complicated reality. 
Based on these three assumptions, the system is modeled as: 
 

Xbad = Abadℵ     (6) 
Xgood = BS + Agoodℵ             (7) 

 

Eq. (6) comes from assumption 2, where Xbad represents the signals from the “bad” 
channels, and Abad is the corresponding mixing matrix.  In Eq. (7), Xgood represents the 
signals from the “good” channels, B is brain signal’s mixing matrix, and Agood is mixing 
matrix for noise from the “good” channels.  The noise א and the brain signal S are 
assumed to satisfy the following equations: 
E (ℵℵT ) = I       (8) 
E (ℵS T ) = 0       (9) 
where E(·) denotes the statistical expectation operator, and I is the identity matrix of 
appropriate size. 
 

6.1.3 Existence of noise in EEG data 
If a “good” channel is correlated with some “bad” channel, then it is likely to be 
contaminated.  For example, if we look at channel 88, Figure 6 shows the correlation 
coefficients between the “good” channel 88 and the 14 bad channels, where the 
correlation coefficient between two signals Y and Z, ρY,Z, is defined as follows: 

ρY , Z =
E[(Y − E(Y))(Z − E(Z))]

σYσ Z
  (10) 

where σY and σZ is the standard deviation of Y and Z respectively. 
 
The maximum absolute correlation coefficient in this example is 0.53, which indicates 
there is a strong presence of noise in channel 88.  The result is similar for most other 
“good” channels.  Therefore, if we want to use these channels for classification, then 
noise reduction is necessary.   
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Figure 6.  Absolute correlation coefficients between “good” channel 88 and 14 “bad” channels. 

 

6.1.4 Subspace Denoise Method 
This subspace method decomposes the noisy EEG signals into noise and uncontaminated 
brain signals.  Figure 7 provides an illustration of this decomposition.  Here, the noise 
space is defined as the subspace spanned by noise, and the signal space is defined as the 
subspace spanned by brain signals. Based on the independence assumption, the signal 
space is orthogonal to the noise space.  So the decomposition may be geometrically 
interpreted as projection on different subspace. 

 
Let UM ∈  RMxN

 denote an orthogonal basis of the noise space, where M is the space 
dimension and N is number of samples. The projection of a noisy signal X onto the noise 
space is defined as: 

 

Xn = UM
T UM X       (11) 

Here Xn can be taken as the noisy part of contaminated signal X.  The original brain signal 
is then defined as: 

 

Xdenoised = X − Xn = (I −UM
T UM )X    (12) 

In implementation, the noise space is derived from singular value decomposition (SVD) 
of the “bad” channels, i.e., 

 

[U, D,V ] = SVD(Xbad )          (13) 

The first M rows of U provide an orthogonal basis of the noise space.  As M increases, 
more noise is removed.  However, the linear assumption here is an approximation of the 
real system.  A large value of M risks the possibility of losing useful information.  Figure 
8 shows how the denoising result varies with M.  In the current implementation, M = 4. 
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Figure 7.  An illustration of subspace denoise method 

 
 

Figure 8.  Absolute correlation coefficients between “good” channel 88 and 14 “bad” channels after 
applying the subspace denoise method.  The x-axis denotes the subspace dimension M, and the y-axis is the 

maximum absolute correlation coefficient of channel 88 with the bad channels. 
 

6.1.5 Feature Extraction 
There are still two open questions after preprocessing and denoising.  First, there is no 
clock tick to synchronize when subject is covertly speaking.  So the expected time stamp 
of each syllable is not accurate.  Such an error would accumulate for the second and third 
syllables in the same trial, which makes the estimated times for when the syllable is 
covertly spoken unreliable.  To compensate for this, only a 0.2 second time window 
around the first syllable is kept in each trial, as shown in Figure 9.  Furthermore, the 
feature dimension is still too large.  For example, there are 1404 points left in each trial 
but the number of trials of subject 2 is only 116.  This may result in overfitting the 
classifier.  So before classification, Principal Component Analysis (PCA) is used to 
reduce the feature dimension from 1404 to 2. 
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Figure 9.  Only the data in 0.2s time window around the first syllable of each trial is retained to build the 

feature set. 
 

6.1.6 Classification 
A Support Vector Machine (SVM) with a quadratic kernel function is used here as the 
final classifier. The experimental results are shown in Table 3, where all of the 
classification rates are averaged over 20 iterations of 5-fold cross-validation, where the 
training and testing set are kept separate.   

6.1.7 Results 
Using all “good” channels, almost all of the subjects with the exception of subject 7 
produce chance results. 

 
Subject Dataset Size Training Accuracy Testing Accuracy 
S1 ba: 119, ku: 118 0.5548 0.5042 
S2 ba: 116, ku: 116 0.5248 0.5041 
S3 ba: 200, ku: 203 0.5245 0.4855 
S4 ba: 187, ku: 189 0.5365 0.4930 
S6 ba: 79, ku: 79 0.5199 0.4856 
S7 ba: 80, ku: 79 0.6128 0.6000 

 
Table 3.  Classification results for 6 subjects using all “good” channels 

 

6.2 Channel Selection 

6.2.1 Manual Channel Selection for Imagined Speech  
Neuroscience research has shown that different brain regions control different human 
behaviors.  Speaking covertly is believed to activate the frontal cortex as well as Broca’s 
and Wernicke’s areas [10], as shown in Figure 10(a).  The electrodes that are distant from 
the active region, such as those directly at the top or the back of head, may not provide 
any relevant information.  Discarding these electrodes would furthermore considerably 
reduce the number of electrodes. 
 
However, exact coordinates of active regions are not provided.  Therefore, we select 10 
electrodes roughly near the possible active region, as shown in Figure 10(b).  
Experimental results show that even such an imprecise set up can still achieve reasonable 
results for certain subjects. 
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(a) 

 

 
(b) 

 
Figure 10. (a) Specific regions of the cortex involved in covert speech, identified with PET scanning. (b) 

EEG electrode distribution.  The ten selected electrodes are marked by red circles. 
 

6.2.2 Automatic Channel Selection for Imagined Speech 
Alternatively, electrodes may be automatically selected based on the information 
provided in their signals.  EEG is known to have poor spatial resolution, so adjacent 
electrodes tend to be highly correlated.  The channels may therefore be clustered based 
on the correlation between electrodes, and this clustering may also reveal location 
information about where stronger signals may be found. 
   
In this approach, correlation coefficients are calculated for each electrode pair by first 
normalizing the denoised signals, Xdenoised, to unit variance, and then computing the 
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covariance matrix.  If the correlation coefficient between two electrodes is greater than 
some threshold α, then the two electrodes may potentially belong to the same cluster. A 
list of potential clusters can then be constructed for each electrode based on how highly 
correlated each electrode is with the others.  That is, by thresholding the covariance 
matrix C, we now have a list of N clusters where N is the number of channels, and 
electrodes n and m belongs to the same cluster if C(n, m) > α. 
   
However, since it is possible to have electrodes that are not highly correlated with each 
other to belong the same cluster, where they may both instead be correlated with another 
electrode, a co-occurrence matrix is subsequently built based on the initial clustering.  

 
The co-occurrence matrix CM is built as follows: 

CM (n, m) = I (C(n,i) > α & C(i,m) > α)( ),  for n, m =1, ..., N
i= n, i≠m

N

∑      (14) 

where N is the number of channels, C is the covariance matrix of the normalized denoised 
signals Xdenoised, α is the correlation threshold (which is set to 0.6 for the imagined speech 
EEG data), and I(·) is the indicator function.  Each element in this co-occurrence matrix 
indicates how many times electrode n co-occurs with electrode m in the initial set of 
clusters.  Each row then (or column, since CM is symmetric) is a potential cluster, and 
contains a list of which electrodes belong to it, where the index of the nonzero elements 
in that row or column denotes the electrode that is in that cluster.  CM now represents a 
more complete set of potential clusters than simply using C > α.   
 
However, this cluster list still needs to be pared down since we still have N clusters, and 
there are clearly going to be highly similar clusters.   We can agglomerate similar clusters 
by using the symmetry of the co-occurrence matrix to help find related clusters.  For 
example, if the set A contains the indices of all electrodes belonging to potential cluster 1, 
then potential cluster 1 is related to the corresponding set of clusters whose indices match 
those contained in the set A.  That is, for a given electrode n we have:  
 

 A = argmax
i∈[1, N ]

 I(CM (n, i) > 0)     (15) 

where I(·) is again the indicator function such that: 

I(CM (n, i) > 0) =
1, Electrode n co - occurs with Electrode i
0, Electrode n does not co- occur with Electrode i

⎧ 
⎨ 
⎩ 

         (16) 

and A is the set of clusters to which electrode n belongs.  Therefore, we will consider all 
clusters in the set A to be “related” in that they may be similar clusters.  We will further 
expand this set by also considering other electrodes found in the cluster set A, and form a 
new set, B: 

B = argmax
j ∈[1, N ]

 I(CM ( j, i) > 0) for ∀i ∈ A   (17) 

Here, B is the set of all clusters that relate to the electrodes of the clusters found in set A.  
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So, for example, let us consider a set of initial clusters: 
 
Cluster 1 = {Electrodes 1, 2, 5, 6} 
Cluster 2 = {Electrodes 1, 2, 5, 6, 7} 
Cluster 3 = {Electrodes 3, 4} 
Cluster 4 = {Electrodes 3, 4, 6} 
Cluster 5 = {Electrodes 1, 2, 5, 6, 7} 
Cluster 6 = {Electrodes 1, 2, 4, 5, 6, 7} 
Cluster 7 = {Electrodes 2, 5, 6, 7} 
 

We will start by selecting a cluster, say Cluster 1.  We would then derive the set A of 
related clusters, as Clusters 1, 2, 5, and 6.  Then, to expand the set A to obtain the set B, 
we consider all unique electrodes in Clusters 1, 2, 5, and 6: 

 
Cluster 1 = {Electrodes 1, 2, 5, 6} 
Cluster 2 = {Electrodes 1, 2, 5, 6, 7} 
Cluster 5 = {Electrodes 1, 2, 5, 6, 7} 
Cluster 6 = {Electrodes 1, 2, 4, 5, 6, 7} 
 

namely Electrodes 1, 2, 4, 5, 6, and 7.  Therefore, since Electrodes 4 and 7 are included in 
this set, we should also consider Clusters 4 and 7, so we add that to set A to grow to our 
new set B = {1, 2, 4, 5, 6, 7}. 
 
Now we will define the probability of an electrode n belonging the overall cluster that is 
most representative of B as: 

P(en ∈ Final Cluster) =
1
bn

Ak

A
I(CM (n, k) > 0)( )

k∈B
∑   (18) 

where en
 is electrode n, bn is the number of times electrode n appears within the cluster 

set B, |Ak| is the number of times electrode k appears in set A, |A| is the number of 
elements in the set B, and the function I(CM(n, k) > 0) represents whether or not electrode 
n is in cluster k. 

 
A threshold is then used to determine if an electrode belongs to the final cluster derived 
from set B.  In this study, the clustering threshold is set to 0.8.  Once the electrodes are 
finally declared to belong to a cluster, the related clusters to the final cluster will no 
longer be used, and the remaining clusters will be analyzed to form a new B set.  And if 
none of the electrodes have probabilities that lie above this clustering threshold, then no 
cluster is found for this set, and the next cluster is selected to form a new set B.  This 
process continues until all clusters have either been discarded or used.  In the given 
example, the final clusters found are: 

 
Cluster 1 = {Electrodes 1, 2, 5, 6, 7} 
Cluster 2 = {Electrodes 3, 4} 
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6.2.3 Results from Channel Selection over All Trials 
Results from the manual electrode selection and the automatic electrode selection method 
discussed in the previous section are presented here.  To select electrodes using the 
automated method, the electrode correlations are first computed using earlier trials as 
templates (e.g., Trials 1 and 21 from each class).  Then for each cluster found by the 
automated method, a single electrode from the cluster is selected as the main electrode, 
which is the one located in closest to the center of the cluster.  From the group of main 
electrodes, the final selected electrodes are then limited to ones that lie above the brain 
regions mentioned in Section 6.2.1, and this electrode region is shown in Figure 11.  In 
manually or automatically selecting channels that are thought to lie above areas of the 
brain that are activated during speech production, the algorithm described in Section 6.1 
is able to achieve better-than-chance results.  The classification rates from the manual and 
automatic channel selection are comparable, although the automated method selects 
fewer electrodes.  The classification results are summarized in  Table 4 and Table 5, and 
plotted in Figure 12. 
 

 
 
Figure 11.  Final channel selection is limited only to the electrodes marked by the red circles in automatic 

electrode selection. 

  Manual Selection 

Subject Dataset Size Training Accuracy Testing Accuracy 
S1 ba: 119, ku: 118 0.5661 0.5371 
S2 ba: 116, ku: 116 0.6240 0.5952 
S3 ba: 99, ku: 98 0.5602 0.5029 
S4 ba: 118, ku: 119 0.5409 0.4829 
S6 ba: 79, ku: 79 0.6124 0.5697 
S7 ba: 80, ku: 79 0.6129 0.6045 

 
Table 4.  Classification results for 6 subjects using manually selected channels 
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  Automatic Selection 

Subject Dataset Size Training 
Accuracy 

Testing 
Accuracy # Channels 

S1 ba: 119, ku: 118 0.5625 0.5296 8 
S2 ba: 116, ku: 116 0.6310 0.5938 7 
S3 ba: 99, ku: 98 0.5940 0.5667 3 
S4 ba: 118, ku: 119 0.5577 0.5216 8 
S6 ba: 79, ku: 79 0.5935 0.5500 5 
S7 ba: 80, ku: 79 0.6125 0.6090 1 

 
Table 5.  Classification results for 6 subjects using automatically selected channels 

 
 

 
Figure 12.  Imagined Speech Classification Rate for each subject, using all channels, manually selected 

channels, or automatically selected channels 
 
 
Subjects 2 and 7 yielded better-than-chance results with rates of close to 60% for all 
trials, and subjects 3 and 6 were slightly over chance.  Overall classification rates have 
improved by selecting specific electrodes.  Classification was also performed for each 
session, for each subject.  These results are shown in Table 6 to Table 17.   
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   Manual Selection 
Subject Session Dataset Size Training Accuracy Testing Accuracy 

S1 

1 ba: 20, ku: 20 0.5860 0.3305 
2 ba: 20, ku: 18  0.5853 0.4146 
3 ba: 19, ku: 20 0.7004 0.5555 
4 ba: 20, ku: 20 0.6712 0.4880 
5 ba: 20, ku: 20 0.6724 0.5464 
6 ba: 20, ku: 20 0.6298 0.4310 

 
Table 6.  Classification results for each session for Subject 1 using manually selected channels 

 
   Automatic Selection 

Subject Session Dataset Size Training 
Accuracy 

Testing 
Accuracy 

# Channels 
Selected 

S1 

1 ba: 20, ku: 20 0.5905 0.3896 3 
2 ba: 20, ku: 18  0.6170 0.4297 2 
3 ba: 19, ku: 20 0.7063 0.5860 4 
4 ba: 20, ku: 20 0.6617 0.5384 4 
5 ba: 20, ku: 20 0.6884 0.5487 2 
6 ba: 20, ku: 20 0.6494 0.4838 2 

 
Table 7.  Classification results for each session for Subject 1 using automatically selected channels 

 
 

   Manual Selection 
Subject Session Dataset Size Training Accuracy Testing Accuracy 

S2 

1 ba: 19, ku: 20 0.6758 0.5100 
2 ba: 20, ku: 20  0.5825 0.3893 
3 ba: 19, ku: 19 0.7020 0.5580 
4 ba: 20, ku: 20 0.6326 0.4597 
5 ba: 20, ku: 19 0.7323 0.6071 
6 ba: 18, ku: 18 0.6385 0.4540 

 
Table 8.  Classification results for each session for Subject 2 using manually selected channels 

 
   Automatic Selection 

Subject Session Dataset Size Training 
Accuracy 

Testing 
Accuracy 

# Channels 
Selected 

S2 

1 ba: 19, ku: 20 0.7672 0.6559 3 
2 ba: 20, ku: 20  0.6002 0.4387 3 
3 ba: 19, ku: 19 0.6106 0.4754 4 
4 ba: 20, ku: 20 0.6739 0.5119 6 
5 ba: 20, ku: 19 0.7215 0.5844 7 
6 ba: 18, ku: 18 0.6949 0.4995 7 

 
Table 9.  Classification results for each session for Subject 2 using automatically selected channels 
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   Manual Selection 
Subject Session Dataset Size Training Accuracy Testing Accuracy 

S3 

1 ba: 19, ku: 20 0.6480 0.5279 
2 ba: 20, ku: 20  0.7138 0.5712 
3 ba: 19, ku: 19 0.6324 0.4761 
4 ba: 20, ku: 20 0.6379 0.5080 
5 ba: 20, ku: 19 0.6688 0.5024 

 
Table 10.  Classification results for each session for Subject 3 using manually selected channels 

 
   Automatic Selection 

Subject Session Dataset Size Training 
Accuracy 

Testing 
Accuracy 

# Channels 
Selected 

S3 

1 ba: 19, ku: 20 0.6160 0.4686 4 
2 ba: 20, ku: 20  0.6863 0.5905 1 
3 ba: 19, ku: 19 0.6458 0.4836 1 
4 ba: 20, ku: 20 0.7593 0.6549 2 
5 ba: 20, ku: 19 0.6820 0.5563 2 

 
Table 11.  Classification results for each session for Subject 3 using automatically selected channels 

 
   Manual Selection 
Subject Session Dataset Size Training Accuracy Testing Accuracy 

S4 

1 ba: 20, ku: 20 0.6619 0.5608 
2 ba: 18, ku: 20  0.6897 0.5115 
3 ba: 20, ku: 20 0.7288 0.6038 
4 ba: 20, ku: 20 0.6123 0.4256 
5 ba: 20, ku: 19 0.5945 0.4487 
6 ba: 20, ku: 20 0.5927 0.4002 

 
Table 12.  Classification results for each session for Subject 4 using manually selected channels 

 
   Automatic Selection 

Subject Session Dataset Size Training 
Accuracy 

Testing 
Accuracy 

# Channels 
Selected 

S4 

1 ba: 20, ku: 20 0.6232 0.4435 3 
2 ba: 18, ku: 20  0.6987 0.5826 2 
3 ba: 20, ku: 20 0.6478 0.5039 3 
4 ba: 20, ku: 20 0.6334 0.4897 2 
5 ba: 20, ku: 19 0. 0. -- 
6 ba: 20, ku: 20 0. 0. -- 

 
Table 13.  Classification results for each session for Subject 4 using automatically selected channels.  

Sessions 5 and 6 are blank as no electrodes were selected for these sessions. 
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   Manual Selection 
Subject Session Dataset Size Training Accuracy Testing Accuracy 

S6 

1 ba: 20, ku: 20 0.6760 0.5536 
2 ba: 20, ku: 19  0.5850 0.3811 
3 ba: 19, ku: 20 0.6386 0.4853 
4 ba: 20, ku: 20 0.5941 0.4145 

 
Table 14.  Classification results for each session for Subject 6 using manually selected channels 

 
   Automatic Selection 

Subject Session Dataset Size Training 
Accuracy 

Testing 
Accuracy 

# Channels 
Selected 

S6 

1 ba: 20, ku: 20 0.6772 0.5261 5 
2 ba: 20, ku: 19  0.5925 0.4338 5 
3 ba: 19, ku: 20 0.6776 0.5856 6 
4 ba: 20, ku: 20 0.7160 0.6226 5 

 
Table 15.  Classification results for each session for Subject 6 using automatically selected channels 

 
 
   Manual Selection 
Subject Session Dataset Size Training Accuracy Testing Accuracy 

S7 

1 ba: 20, ku: 20 0.6916 0.5330 
2 ba: 20, ku: 18  0.9005 0.8470 
3 ba: 19, ku: 20 0.6028 0.4568 
4 ba: 20, ku: 20 0.7400 0.6151 

 
Table 16.  Classification results for each session for Subject 7 using manually selected channels 

 
   Automatic Selection 

Subject Session Dataset Size Training 
Accuracy 

Testing 
Accuracy 

# Channels 
Selected  

S7 

1 ba: 20, ku: 20 0.7379 0.6488 1 
2 ba: 20, ku: 18  0.9042 0.8344 1 
3 ba: 19, ku: 20 0.7045 0.5861 1 
4 ba: 20, ku: 20 0.7263 0.5842 1 

 
Table 17.  Classification results for each session for Subject 7 using automatically selected channels 

 
Overall, the classification rates varied from session to session for each subject.  Some 
sessions lead to better results than others, most notably for subject 7.  Subject 7 seemed to 
have the best results per session and overall.  It was also interesting to note that the 
automatic channel selection method selected one channel for the in-session and overall 
classification, which also happened to be the channel with the best classification rate if 
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the classification were to be performed for each individual channel.  Classification rates 
were calculated for each channel and were plotted for each electrode (shown in Figure 
13).  The red ‘X’ in the plot marks the classification rate for the electrode that was 
selected for each session and overall.  This seems to indicate that useful information may 
indeed lie in the electrode regions suggested in this study, and that correlation 
information may be used to locate interesting areas of brain activity. 

 
Figure 13.  Classification rates per channel for Subject 7 

 

6.3 Imagined Movement EEG Classification  
The automated channel selection method may also be used to discard redundant 
electrodes, or electrodes that do not seem to provide information that may be helpful for 
classification.  The EEG data for motor imagery was used to test the ability of the 
automated channel selection method to find a reduced set of electrodes that would either 
maintain or improve upon the classification rates using all electrodes. 

6.3.1 Feature Extraction and Classification 
For the motor imagery EEG data, we used the signal model shown in Figure 14 along 
with some assumptions to estimate the power spectral density (PSD) of each EEG signal 
(here represented by x[n], the observed signal).  
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Figure 14.  Block diagram of the signal model 
 
With this model, we assume that the EEG signals can be modeled as a wide-sense 
stationary random process and that each signal is generated by inputting a zero-mean 
white noise ε[n] with variance σ2 into a linear shift-invariant all-pole filter.  The 
corresponding time series model [11] is given in equation (19).   

 

x[n] = − αk x[n − k]+ ε[n]
k=1

p

∑     (19) 

where x[n] is the observed signal at time n and αk are the model coefficients.  The integer 
p is the order of this model.  As can be seen in this equation, this autoregressive (AR) 
model attempts to predict the current time sample given previous time samples, and its 
transfer function is as given as follows. 

 

H(z) =
1

1+ αkz
−k

k=1

p

∑
     (20) 

Consequently, the AR coefficients αk completely determine the spectrum of the model 
output, since the spectrum of the model output is the product |H(ejω)|2 and σ2.  The AR 
coefficients thus characterize the spectral peaks of the signal and its sharpness. 

 
AR coefficients were computed for each electrode’s signal using the Burg method as 
described in [12] and concatenated to form a feature vector.  Orders 2 through 6 were 
tested to see which order gave the best classification accuracies.  An AR model order of 3 
appeared to be optimal for the imagined movement EEG dataset. 
 
The imagined movements were then classified using a SVM with a polynomial kernel of 
degree 6, with a “one against the rest” scheme to classify the 4 different classes.  The 
publicly available software LibSVM [13] was used for SVM classification.   

6.3.2 Results 
In using all 60 electrodes for subject k3b with 360 trials, 20 iterations of 5-fold cross 
validation were run, resulting in an average classification rate of 82.06%.  The automated 
channel selection method selected the 29 electrodes marked in green shown in Figure 15, 
and only using these electrodes yielded an average classification accuracy of 81.88%, 
which is comparable to the results using all electrodes.  This demonstrates the ability of 
the algorithm to find electrodes that contain information useful for classification. 
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Figure 15.  Topography of electrodes for the motor imagery EEG data.  Electrodes selected by the 

automated channel selection method are marked in green. 
 

7 CONCLUSIONS 
In this report we investigated the effects of reducing the number of electrodes and the 
number of samples per electrode in EEG signal-based classification. First we discussed 
the algorithm for building suitable dictionary, which can sparsely represent EEG data. 
Then the capability of compressed sensing to reconstruct whole EEG signal is tested from 
reduced measurement data.  We also studied the feasibility of using geometric 
information and results from neuroscience knowledge to reduce the number of channels.  
It was shown that manually or automatically selecting electrodes based on neuroscience 
knowledge yields better classification results.  After subspace denoising, the selected 
electrodes achieve near or above 60% classification accuracy on almost half the subjects.  
However, because of the lack of exact location information and limited number of 
subjects, there is need for more research.   
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